The University of Glasgow 12-Lead ECG Analysis Algorithm

What is the Glasgow Algorithm?

Developed by Peter Macfarlane, DSc, FESC, and his team, the University of Glasgow 12-lead ECG Analysis Algorithm has more than 35 years of history and is considered one of the top three resting ECG interpretive algorithms in the world. The Glasgow algorithm was developed and continuously improved over the years by a team of world-renowned ECG researchers. Dr. Macfarlane and Physio-Control collaborated to make some changes to the Glasgow algorithm to improve its utility in the prehospital setting.

The Glasgow Algorithm and 2009 AHA/ACCF/HRS Recommendations

The 2009 AHA/ACCF/HRS recommendations, of which Dr. Macfarlane was a coauthor, have new ST elevation myocardial infarction (STEMI) criteria that for the first time depend on both age and gender.\(^1\) The recommendations are, in fact, a simplified version of the criteria used in the Glasgow algorithm—simplified so that a human can remember the criteria. For example, Figure 1 shows the thresholds for ST elevation in lead V3. The AHA/ACCF/HRS criteria for males have a step change at age 40 years, and thresholds are rounded to the nearest 0.05 mV. The Glasgow criterion for V3 in males varies continuously from age 20 to 60 years, i.e. the threshold is set to a finer resolution. It also needs to be set on a lead-by-lead basis as was determined by Macfarlane after measuring ST levels in a large database of normals.\(^2\) The finer adjustment of thresholds for ST elevation is easily managed by the computer algorithm, but difficult for a human to remember and apply.

Another 2009 AHA/ACCF/HRS recommendation is to use the criteria from a study of 26,003 patients by Sgarbossa et al to allow detection of some STEMI ECGs when the patient also has left bundle branch block (LBBB).\(^3\) A recent meta-analysis by Tabas confirmed that across eleven studies the Sgarbossa criteria were useful for diagnosing acute myocardial infarction in patients with LBBB.\(^4\)

The Glasgow algorithm has been evaluated against a prehospital ECG database and has been shown to be significantly more sensitive and specific for detecting ST elevation MI than the original ESC/ACC criteria.\(^5,6,7\) Its performance was similar to that of board certified cardiologists.
Comparing the Glasgow Algorithm to Other Interpretive Algorithms

Differences between the Glasgow algorithm and other interpretive algorithms commonly used in prehospital monitor/defibrillators are summarized in the table below.

<table>
<thead>
<tr>
<th>Feature</th>
<th>LIFEPAK® 15 monitor/defibrillator</th>
<th>LIFEPAK 12 defibrillator/monitor</th>
<th>Zoll® M- & E-series defibrillators</th>
<th>Philips® MRx monitor/defibrillator</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-lead ECG interpretive algorithm</td>
<td>Glasgow v27</td>
<td>GE 12SL v14</td>
<td>GE 12SL v14</td>
<td>Dkl vPH100B</td>
</tr>
<tr>
<td>Age and gender criteria for STEMI</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>LBBB criteria for STEMI</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No information available</td>
</tr>
<tr>
<td>STEMI Statement</td>
<td>*** MEETS ST ELEVATION MI CRITERA ***</td>
<td>*** ACUTE MI SUSPECTED ***</td>
<td>** ** ** ** <<< ACUTE MI <<< << <</td>
<td></td>
</tr>
<tr>
<td>Published results from testing with prehospital ECGs</td>
<td>Yes* (references are available from your sales consultant)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 2, Comparison Table
For details on the validation and accuracy of the University of Glasgow 12-lead ECG Analysis Program, see the Physio-Control publication, “Glasgow 12-lead ECG Analysis Program: Statement of Validation and Accuracy” (available from your sales consultant).
REFERENCES

