LUCAS® CHEST COMPRESSION SYSTEM
With Radiotranslucent Back Plate
for use in the Cath Lab
With a carbon fiber back plate, visualizing coronary arteries during ongoing compressions is even easier.

The LUCAS cath lab back plate is made out of carbon fiber which is lightweight, very strong, and fully radiotranslucent. The material enables the construction of a thin but durable back plate that does not interfere with the angiogram. The LUCAS device facilitates the management of acute and life-threatening complications in the cath lab.

PCI Back Plate Specifications

- Material: Carbon Fiber
- Dimensions: (L x W) : 49 x 24 cm / 19.3 x 9.4 inches
 Thickness : 7 mm / 0.3 inches
- Weight: 1 kg / 2.2 lbs
- Fully radiotranslucent
- Can be pre-positioned in unstable patients, without compromising angiographic imaging, and allowing for quick set up in case of refractory/non-shockable arrest.

Designed to deliver effective, uninterrupted and consistent compressions for victims of circulatory arrest, according to AHA guidelines

Facilitates circulation:
- to vital organs
- by allowing compressions on a patient on the cath lab table
- by minimizing interruptions despite ongoing fluroscopy

Allows for simultaneous catheterization as well as PCI during ongoing CPR

Frees up resources and buys time for decision making in a stressful situation
- a bridge to continued PCI, LVAD, cardiopulmonary bypass or surgery
- increases personnel safety by minimizing radiation exposure typically seen during manual CPR
We believe LUCAS CPR is a big advancement in resuscitation therapy. Furthermore, it enables for a fast intervention of a closed coronary artery also during instable circulation, and allows for a shortened door-to-balloon time."

"The mood in the cath lab was calm at all times despite the ongoing VF...
This is quite contrary to what usually happens in such situations when manual compressions are used."

"We believe LUCAS CPR is a big advancement in resuscitation therapy. Furthermore, it enables for a fast intervention of a closed coronary artery also during instable circulation, and allows for a shortened door-to-balloon time."

“... percutaneous intervention can be carried out successfully during ongoing automatic mechanical compressions by the LUCAS device, which provides an efficient circulatory pulsatile support [...] without the need for additional staff involved in basic life support.”

– Agostoni et al, Antwerp, Belgium (Int J Cardiol. 2007 Feb 28).