Can Oxygen Be Bad?

Mike McEvoy, PhD, NRP, RN, CCRN
Professor Emeritus - Critical Care Medicine
Albany Medical College, New York
Chair – Resuscitation Committee – Albany Med Center
EMS Coordinator – Saratoga County, New York
EMS Editor – Fire Engineering Magazine
EMS Director – New York State Association of Fire Chiefs

Class Code: 664

Objectives

• Adverse effects of hypoxia
 – High altitude climbing lessons
• Oxygen free radicals
 – You’ve heard the name; what are they?
 – How they cause harm
• Interventions to prevent harm from hyperoxia

Hypoxia

Mt. Kilimanjaro
5895 m (19340 ft)
Effects of sudden hypoxia
(Removal of oxygen mask at altitude or in a pressure chamber)

• Impaired mental function; mean onset at SaO2 64%
• No evidence of impairment above 84%
• Loss of consciousness at mean saturation of 56%

Notes:
- absence of breathlessness when healthy resting subjects are exposed to sudden severe hypoxia
- mean SpO2 of airline passengers in a pressurized cabin falls from 97% to 93% (average nadir 88.6%) with no symptoms and no apparent ill effects

“Normal” Oxygen Saturation
Normal range for healthy young adults is approximately 96-98% (Crapo AJRCCM, 1999;160:1525)

Previous literature suggested a gradual fall with advancing age…

However, a recent Salford/Southend UK audit of 320 stable adults aged >70 found:
Mean SpO2 = 96.7%
(2SD range 93.1-100%)

“Normal” nocturnal SpO2

• Healthy subjects in all age groups routinely desaturate to an average nadir of 90.4% during the night (SD 3.1%)*

(Gries RE et al Chest 1996; 110: 1489-92)

*Therefore, be cautious in interpreting a single oximetry measurement from a sleeping patient. Watch the oximeter for a few minutes if in any doubt (and the patient is otherwise stable) as normal overnight dips are of short duration.
What happens at 9,000 metres (approximately 29,000 feet)?

It Depends…

SUDDEN
Passengers unconscious in <60 seconds if depressurized

ACCLIMATIZATION
Everest has been climbed without oxygen

Sudden Acclimatization

Mike 73%
Godlisten 84%
Pete 41%

AMS
Acute Mountain Sickness

Trekker's on the Annapurna Circuit
Is Hypoxia Bad?

“Hypoxia not only stops the motor, it wrecks the engine.”

- John Scott Haldane, 1917
“Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, there would be no water, a vital ingredient for beer.”
-Dave Barry

- Diatomic gas
- Atomic weight = 15.9994 g⁻¹
- Invisible
- Odorless, tasteless
- Third most abundant element in the universe
- Present in Earth’s atmosphere at 20.95%

• Essential for animal life
Oxygen therapy has always been a major component of emergency care. Health care providers believe oxygen alleviates breathlessness.

We began giving oxygen because it seemed like the right thing to do...

Documented benefits:
- Hypoxia
- Nausea/vomiting
- Motion sickness

Today, there are numerous textbooks on the reactive oxygen species.
Oxygen

- We are learning that oxygen is a two-edged sword
- It can be beneficial
- It can be harmful

The Chemistry of Oxygen

- Oxygen is highly reactive; it has 2 unpaired electrons
- Molecules/atoms with unpaired electrons are extremely unstable and highly-reactive
- Referred to as “free radicals”

How are free-radicals produced?

- Normal respiration and metabolism
- Exposure to air pollutants
- Sun exposure
- Radiation
- Drugs
- Viruses
- Bacteria
- Parasites
- Dietary fats
- Stress
- Injury
- Reperfusion
Most cells receive approximately 10,000 free-radical hits a day. Enzyme systems can normally process these.

Changes associated with aging are actually due to effects of free-radicals. As we age, the antioxidant enzyme systems work less efficiently.

An excess of free-radicals damages cells and is called oxidative stress.
The Chemistry of Oxygen

Diseases associated with free-radicals:

- Arthritis
- Cancer
- Atherosclerosis
- Parkinson’s
- Alzheimer’s
- Diabetes
- ALS

Neonatal diseases:
- Intraventricular hemorrhage
- Periventricular leukomalacia
- Chronic lung disease / bronchopulmonary dysplasia
- Retinopathy of prematurity
- Necrotizing enterocolitis

The Chemistry of Oxygen

The Chemistry of Oxygen

Oxidative Stress

- Occurs during reperfusion—not during hypoxia (when O₂ enters damaged area)
- Flooding ischemic cells with oxygen worsens oxidative stress (proportionate)
Not a new concept

ACLS Guidelines 2000:
• Supplemental oxygen only for saturations < 90%
• 2005: ditto
• 2010: < 94%

Stroke

Minor or Moderate Strokes	Severe Strokes
Variable | Oxygen | Control | Oxygen | Control
Survival | 81.8% | 90.7% | 53.4% | 47.7%
SSS Score | 54 (54-58) | 57 (52-58) | 47 (28-54) | 47 (40-52)
Barthel Index | 100 (95-100) | 100 (95-100) | 70 (32-90) | 80 (47-95)

• 1994: AHA Stroke Council concluded no data support routine use of supplemental oxygen in stroke patients
• More recently, oxygen has been suggested to be detrimental
Neonates

- 1,737 depressed neonates:
 - 881 resuscitated with room air
 - 856 resuscitated with 100% oxygen
- Mortality:
 - Room air resuscitation: 8.0%
 - 100% oxygen resuscitation: 13.0%
- Neonatal mortality reduced with room air resuscitation

Cardiac Arrest

- Emphasis on circulation
 - Compression only CPR may be better
 - Known dangers of oxidative stress
- Study on Room Air vs. FiO₂ 1.0
 - In-hospital med/surgical wards
 - Standard ACLS, change only FiO₂ (30 days)
 - Study halted by IRB: use of 100% oxygen harmful to human subjects!

Therapeutic Hypothermia

Post ROSC Survival:
- Post cardiac arrest hypothermia
- 58 patients, all ROSC in OOH CPA
- Cooling protocol: keep sat 92-96%
 - Survival ↓ by 50% when sats < 92%
 - Survival ↓ by 83% when sats > 96%
Trauma

• Charity Hospital (1/1 ➔ 9/30/2002):
• 5,549 trauma patients by EMS

Mortality:

![Oxygen vs. None](chart.png)

OVERALL

<table>
<thead>
<tr>
<th>Oxygen</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENETRATING</td>
<td></td>
</tr>
<tr>
<td>BLUNT</td>
<td></td>
</tr>
</tbody>
</table>

Where to from here?
British Thoracic Society

• Issued an O₂ therapy guideline 2008
• All this… and more:
 – Routine administration can be harmful
 – O₂ does not affect dyspnea unless hypoxic
 – Hyperoxia may decrease target organ perfusion (when given needlessly)
 – Unnecessary O₂ delays recognition of deterioration by providing false reassurances with high O₂ saturations

Got oxygen?

British Thoracic Society

O₂ therapy guideline (everywhere):
• Keep normal/near-normal O₂ sats
 – All patients except hypercapnic resp. failure and terminal palliative care
 – Keep sat 92-96%, tx only if hypoxic
 – Use pulse oximetry to guide tx – max 98%

www.brit-thoracic.org.uk
Oxygen?

Implications: Oximetry mandatory

Implications: Venturi Comeback
Take Home Messages

• Oxygen can hurt
• Empiric use is not a good practice - O₂ tx must be focused
• Use oximetry to guide care: prevent hypoxia and hyperoxia

Questions? (Class Code: 664)

www.mikemcevoy.com